


INTRODUCTION TO NUMERICAL GEODYNAMIC
MODELLING

This hands-on introduction to numerical geodynamic modelling provides a solid grounding
in the necessary mathematical theory and techniques, including continuum mechanics and
partial differential equations, before introducing key numerical modelling methods and
applications. Fully updated, this second edition includes four completely new chapters
covering the most recent advances in modelling inertial processes, seismic cycles and fluid-
solid interactions, and the development of adaptive mesh refinement algorithms. Many
well-documented, state-of-the-art visco-elasto-plastic 2D models are presented, which
allow robust modelling of key geodynamic processes. Requiring only minimal
prerequisite mathematical training, and featuring over 60 practical exercises and 90
MATLAB examples, this user-friendly resource encourages experimentation with
geodynamic models. It is an ideal introduction for advanced courses and can be used as
a self-study aid for graduates seeking to master geodynamic modelling for their own
research projects.

taras gerya is Professor in the Department of Earth Sciences at the Swiss Federal
Institute of Technology (ETH-Zürich). He is an expert in numerical geodynamic modelling,
with his current research focusing on subduction and collision processes, ridge-transform
oceanic spreading patterns, intrusion emplacement into the crust, generation of earth-
quakes, fluid and melt transport in the lithosphere, Precambrian geodynamics, formation
of terrestrial planets and evolution of life. In 2008 he was awarded the Golden Owl Prize by
ETH students for his teaching on continuum mechanics and numerical modelling.
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“A great introduction to computational geodynamics with vivid examples, hands-on exer-
cises and step-by-step derivations of formulas. Even better than the first edition.”

– Dr Sascha Brune, GFZ Potsdam

“This book is so much more than an introduction to geodynamic modelling. Taras Gerya
opens the world of geodynamic experiments by taking the reader through a carefully
designed set of hands-on programming exercises that will convince you that modelling is
not terribly complicated, but a process to logically follow through. Go ahead and get
started!” – Dr Susanne Buiter, Geological Survey of Norway

“This comprehensive textbook challenges all solid Earth scientists to give geodynamic
modelling a try in a hands-on, empowering style. The new edition covers even more
ground, including cutting-edge topics. A great achievement, and the community will be
the better for it.” – Professor Thorsten Becker, University of Texas at Austin
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Preface to the second edition

The main reason for writing this second edition is the rapid recent progress in the field of
numerical geodynamic modelling, which is one of the most dynamic and fast growing fields
of the modern Earth sciences. Since the publication of the first edition in 2010 (almost
a decade ago . . .), several important research directions have become very prominent and
advanced in computational geodynamics, such as investigation of coupled solid-fluid
processes, coupling of geodynamic evolution to surface processes, modelling of seismic
cycles at plate boundaries, development of adaptive grid refinement methods and free
surface stabilization approaches, elaboration of more accurate continuity-based
Lagrangian advection algorithms, development and broad application of new efficient 3D
visco-elasto-plastic highly parallelized numerical modelling tools etc. In order to account
for some of these exciting novelties, I both significantly revised some of the previously
published chapters (especially numerical modelling of advection processes in Chapter 8
and numerical treatment of visco-elasto-plastic materials in Chapters 12 and 13) and added
four new chapters focusing on recent numerical advances in

• modelling of inertial processes (Chapter 14),
• modelling of seismic cycles (Chapter 15),
• modelling of coupled fluid-solid processes (Chapter 16) and
• development of adaptive mesh refinement algorithms (Chapter 17).

As in the first edition, a single relatively simple numerical modelling method (combina-
tion of staggered finite differences with marker-in-cell techniques, SFD+MIC) and
MATLAB programming are used uniformly throughout this textbook. I hope you will
enjoy this new edition!

xi
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Introduction

Theory: What is this book? What this book is not. Get started. Seven golden
rules for learning the subject. Short history of geodynamics and numerical
geodynamic modelling. Few words about programming and visualization. Ten
programming rules.
Exercises: Starting with MATLAB. Visualization exercise.

What is this book?

This book is a practical, hands-on introduction to numerical geodynamic modelling for
inexperienced people, i.e. for young students and newcomers from other fields. It does not
require much background in mathematics or physics and is therefore written with a
maximum amount of simple technical details. If you are inexperienced – this book is yours!

What this book is not

This book is not a treatise or a compendium of knowledge for experienced researchers. It
does not contain large overviews of existing numerical techniques, and only simple
approaches are explained. If you are experienced in numerical methods, look at Chapters
12–21 where some advanced numerical techniques and model examples are discussed.
Then you can decide if you wish to read about the technical details presented in these and
other chapters.

Get started

Already decided?! Then let us get started! In recent decades numerical modelling has
become an essential approach in geosciences in general and in geodynamics in particular.
This is a very natural process (‘instinctive evolution’) since human scales of direct
observation are extremely limited in both time and space (depth) and since rapid progress

1
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in computer technology offers every day new and exceptional possibilities to explore
sophisticated mathematical models. This is true in every discipline, and even industrial
applications.
Numerical geodynamic modelling naturally ‘compensates’ for the fundamental unavail-

ability of data needed for constraining the evolution of the Earth’s interior and surface over
time, which is the subject of geodynamics. The following simple exercise explores this
subject in the context of the availability of data. Let us imagine an ideally symmetrical Earth
with physical properties (density, viscosity, temperature, etc.) as functions of depth and
time. A simple two-dimensional time-depth diagram covering the Earth’s entire history and
its interior will thus be a schematic representation of the subject of geodynamics (Fig. 1).
The entire diagram should then be covered by data points characterizing the physical state
of the Earth at different depths, ranging from 0 to 6000 km, and for different moments of
geological time, ranging from 0 to around 4.5 billion years ago. However, the unfortunate
fact for geodynamics is that observations for such systematic coverage are only available
along the two axes of the diagram: geophysical data for the present-day Earth structure and
the historical record in rocks formed close (typically within a few tens of kilometres) to the
Earth’s surface. The rest of the diagram is thus fundamentally devoid of observational data,
so we have to rely on something else. What else can we use? Scientific intuition based on
geological experience and modelling based on fundamental laws of continuum mechanics!
However, our intuition cannot always be suitable for geodynamical processes that are

Fig. 1. Time-depth diagram presenting the availability of data for constraining geodynamic evolution
of the Earth (Gerya, 2014b). The size of data points reflects the abundance of available data. This is
obviously a simplified view since for a spherical Earth such a diagram should be four dimensional.

2 Introduction
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completely beyond human scales in time (a few years) and space (a fewmetres). We have to
accept that some of these processes could look completely counterintuitive to us. The ways
in which various geodynamic processes interact with each other can also be very difficult to
conceive using only scientific intuition. This is why intuition in geodynamics should be –
must be – assisted and calibrated by modelling. In a way, modelling helps train our intuition
for very deep and very slow geological processes that cannot be observed directly. Another
role of modelling is the quantification of geodynamic processes based on the sparse array of
available observations. Consequently, the systematic use of numerical modelling is crucial
to develop, test, and quantify geodynamic hypotheses – and perhaps most questions about
the Earth.

At present, numerical modelling in geosciences is widely used for both testing and
generating hypotheses, thereby strongly pushing geology from an observational, intuitive
to a deductive, predictive natural science. Geo-modelling and geo-visualization play a
strong role in relating different branches of geosciences. Therefore, it has become necessary
to have some knowledge about numerical techniques before planning and conducting state
of the art interdisciplinary research in any branch of geosciences. In this respect, geody-
namics is traditionally ‘infected’ by numerical modelling and pushes the progress of
numerical methods in geosciences.

Before starting with numerical modelling we should consider one of the very popular
‘myths’ among geologists, who often declare (or think) something like:

Numerical modelling is very complicated; it is not affordable for persons with traditional geological
background and should be performed by mathematicians.

I was thinking like that before I started. I always remember my feeling when I heard for
the first time the expression, ‘Navier–Stokes equation’. ‘Ok, forget it! This is hopeless.’ –
did I think at that time, and that was wrong. Therefore, let me formulate the seven ‘golden
rules’ elaborated during my learning experience.

Golden Rule 1. Numerical modelling is simple and is based on simple mathematics.
All you need to know is:

• derivatives and
• linear algebra.

Most of this ‘complicated’mathematical knowledge is learned in school before we even
start to study at university! I often say to my students that all is needed is:

strong MOTIVATION,
algorithmic THINKING (ability to ‘translate’ generic tasks into code algorithms),
usual MATH,
clear EXPLANATIONS,
regular EXERCISES.

Motivation and algorithmic thinking are most important, indeed …

Get started 3
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Golden Rule 2. When numerical modelling looks complicated see Rule 1.

Golden Rule 3. Numerical modelling consists of solving partial differential equations
(PDEs).
There are only a few equations to learn (e.g. Lynch, 2005). They are generally not

complicated, but it is essential to learn and understand them gradually and properly. For
example, to model the broad spectrum of geodynamic processes discussed in this book, it is
necessary to know three principal conservation PDEs only:

• the equation of continuity (conservation of mass),
• the equation of motion (conservation of momentum – Navier–Stokes equation!),
• the temperature equation (conservation of energy).

So, only three equations have to be understood and not tens or hundreds of them!

Golden Rule 4. Read books on numerical methods several times.
There are many excellent books on numerical methods. Many of these books are,

however, written for physicists and engineers and need effort to be ‘digested’ by people
with a traditional geological background. The situation has improved recently after several
books written by experienced geodynamicists have appeared on the market (Gerya, 2010a;
Ismail-Zadeh and Tackley, 2010; Simpson, 2017; Morra, 2018).

Golden Rule 5. Repeat the transformations of equations involved in numerical
modelling.
These transformations are generally standard and trivial, but repeating them develops a

familiarity with the PDEs (maybe you will even start to like them ☺), and allows under-
standing the structure of the different PDEs. This book, by the way, is full of such trivial
detailed transformations – follow them carefully!

Golden Rule 6. Visualization is important!
Without proper visualization of results, almost nothing can be done with numerical

modelling (Fig. 2). Modellers often spend more time on visualization than on computing
and programming.

Golden Rule 7. Ask!
This is the most efficient way of learning. In numerical geodynamic modelling, many

small numerical know-hows exist. They are extremely important, but rarely discussed in
publications (in contrast to this book☺). Indeed, do not rely solely on asking – first try hard
to find your own answer to the problem you want to solve numerically.

Short history of geodynamics and numerical geodynamic modelling

The numerical modelling approaches discussed in this book are adopted for solving
thermomechanical geodynamic problems. Geodynamics is dynamics of the Earth – a

4 Introduction
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core geological subject that has been very actively progressing during the last century,
especially since the establishment of plate tectonics in the 1960s. This was a really great time
for geology that ‘drifted’ strongly and rapidly from a descriptive (qualitative) field, to a
predictive (quantitative) physical science. The overall history of the development of geody-
namics was not, indeed, very ‘dynamic’ but rather slow and complicated. A brilliant introduc-
tion to this field (which I strongly recommend you to read) is written by Donald L. Turcotte
and Gerald Schubert (2002, 2014). According to this introduction and further literature search,
the following steps were notable historically in understanding the Earth as a dynamic system.

1620: Francis Bacon pointed out the similarity in shape between the west coast of Africa
and the east coast of South America.

This was about 400 years ago (!) and several centuries were needed before we could start to
interpret this similarity.

1665: Athanasius Kircher, in his two-volume ‘Mundus subterraneus’, probably the first
printed work on geophysics and volcanology, held that much of the phenomena on Earth
were due to the fact that there is ‘fire’ under the terra firma.

This was, indeed, very unusual teaching for those days (about 350 years ago!) and very
much in line with the thermal origin of mantle convection.

Early part of the seventeenth century: Gottfried Wilhelm Leibniz proposed that the Earth
has a molten core and anticipated the igneous nature of the mantle.

This began our understanding of the Earth as a hot layered planetary body. One really
needed vision to guess this around 300 years ago!

Later part of the nineteenth century: The fluid-like behaviour of the Earth’s mantle was
established, based on gravity studies; mountain ranges have low density roots.

This crucial finding was ‘coupled’ to Earth dynamics only one hundred years later and was
not explored in the continental drift hypothesis.

1895–1915: The unforeseen discovery of radioactivity.
That ‘killed’ the concept of progressive dissipation of the heat of the Earth, and the

correlative contraction, as the mechanism for orogenic stresses. It also changed the

Fig. 2. Rule 6. Visualization is important!

Short history of geodynamics 5
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age of the Earth and stratas by an order of magnitude … All this forced further serious
rethinking of geological concepts about dynamic processes shaping the Earth.

1910: Frank B. Taylor formulated the Continental Drift hypothesis.
This was the real beginning of ‘drifting’ toward plate tectonics, still a long way to go.
1912–1946: Alfred Wegener further developed the continental drift hypothesis, and showed a

correspondence of the geological provinces, relict mountain ranges and fossil types. Driving
forces – tidal rotation of the Earth. Single protocontinent – Pangaea.

The principal question is considered to be, ‘why do continents move?’ and ‘what are the
driving forces?’ and not yet, ‘how do continents move?’ and ‘what is the movement
mechanism?’

1916: Gustaaf Adolf Frederik Molengraaff proposed that mid-ocean ridges are formed by
seafloor spreading as the result of the movement of continents in order to account for the
opening of the Atlantic Ocean as well as the East Africa Rift.

The mid-ocean ridges were ‘re-discovered’ for plate tectonics 40 years later …
1924: Harold Jeffreys showed that Wegener’s forces were insufficient for moving

continents.
Computing forces for testing a geodynamic hypothesis is one of the core principles of

modern geodynamics as well! Another point to learn is that opposition to the continental
drift hypothesis using physical arguments was always strong and probably strongly
delayed the theory of plate tectonics.

1931: Arthur Holmes suggested that thermal convection in the Earth’s mantle can drive
continental drift.

This crucial idea answered a question about driving forces, but not questions about the
movement mechanisms. It was known from seismic studies that the Earth’s mantle is in a
solid state and that elastic deformation does not allow thousands of kilometres of motion
of the continents.

1935: N. A. Haskell established the fluid-like behaviour of the mantle (viscosity 1020 Pa s)
based on the analysis of beach terraces in Scandinavia and the existence of post-
glaciation rebound.

Actually, this had also been established earlier from inferring crustal roots. The question
about the physical mechanisms of solid-state mantle deformation remained open.

1937: Alexander du Toit suggested the existence of two protocontinents – Laurasia and
Gondwanaland, separated by the Tethys Ocean.

This is a really dramatic story: geologists were continuously developing and supporting the
continental drift hypothesis, but the general idea of large lateral displacements of
continents was continuously rejected by geophysicists.

1950s:Understanding of the world-wide network of mid-ocean ridges was improved during
extensive exploration of the seafloor.

Evidence is critically growing in line with Molengraaf’s ideas …
1950s:Mechanisms of solid-state creep of crystalline materials were discoved which were

applicable, for example, to the flow of ice in glaciers.
The answer to the second crucial question was finally found in materials science!

6 Introduction

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316534243.001
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 18 Aug 2019 at 08:57:41, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316534243.001
https://www.cambridge.org/core


Breakthrough! The great 1960s started!

1960s: Paleomagnetic studies led to the finding of regular patterns of magnetic anomalies
on the seafloor.

1962: Harry Hess suggested that the seafloor was created at the axis of the ridge.
In fact, this was a refinement of Molengraaf’s hypothesis.
1965: B. Gordon proposed the quantitative link between solid-state creep and mantle

viscosity.
1968: Jason Morgan formulated the basic hypothesis of plate tectonics (mosaic of rigid

plates in relative motion with respect to one another as a natural consequence of mantle
convection).

1968: Isacks and co-workers attributed earthquakes, volcanoes, and mountain building to
plate boundaries.

1967–1970: This saw the development and broad acceptance of plate tectonics.
Before this time, continental drift was opposed by geophysicists because of the rigidity of

the solid elastic mantle and the ‘absence’ of physical mechanisms allowing horizontal
displacements of thousands of kilometres for continents.

The crucial point that was finally understood by the geological community is that both
viscous (i.e., fluid-like) and elastic (i.e., solid-like) behaviour is a characteristic of the Earth
depending on the time scale of deformation. The Earth’s mantle, which is elastic on a
human time scale, is viscous on geological time scales (>10 000 years) and can be strongly
internally deformed due to solid-state creep. There is an amazing substance demonstrating a
similar ‘dual’ viscous-elastic behaviour. This is silicon putty or ‘silly putty’ which is
frequently used as an analogue of rocks in experimental tectonics. It deforms like clay in
the hands, but when dropped on the floor it jumps up like a rubber ball (see animation
Silly_putty.m1v).

Plate tectonics established both a conceptual and a physical basis of geodynamics. The
next rapid development of numerical methods of continuum mechanics in this field is the
logical consequence of both theoretical and technological progress. The snapshot-like
history of 2D-3D numerical geodynamic modelling (1D models appeared even earlier!)
looks as follows (partly subjective literature-web-search-based view, more details on this
issue can be found in several overviews of mantle convection modelling: Richter, 1978;
Schubert, 1992; Bercovici, 2007).

1970: First 2D numerical models of subduction (Minear and Toksöz, 1970).
Exactly at the time when the ‘plate tectonics era’ had just started! The first subduction

model was thermo-kinematic, with a prescribed velocity field corresponding to a down-
going slab inclined at 45°.

1971: First 2D mantle thermal convection models (Torrance and Turcotte, 1971).
This paper discussed possible implications of mantle convection with temperature-depen-

dent viscosity for continental drift. Thermomechanical models based on the stream
function formulation for the mechanical part were explored. A rectangular model

Short history of geodynamics 7
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domain, with a temperature-dependent viscosity and resolution of up to 22 × 16 nodal
points was used.

1972, 1978: First 2D numerical (finite element) models of salt dome dynamics (Berner et
al., 1972; Woidt, 1978).

Before this, geodynamic modelling studies of crustal diapirism used analytical and analo-
gue modelling approaches. The paper by Woidt (1978) pointed out the inconsistency of
the numerical approach used by Berner et al. (1972).

1977–1980: First 2D thermal-chemical mantle convection models (Keondzhyan and
Monin, 1977, 1980).

A binary stratified medium was used to study the effects of compositional layering on
mantle convection.

1978: First numerical models of continental collision (Bird, 1978; Daignières et al., 1978).
Mechanical models explored the finite element approach.
1983: First numerical models of subduction initiation (Matsumoto and Tomoda, 1983).
Remarkable geodynamic modelling ahead of its time! The numerical solution was based on

stream function formulation combined with marker-in-cell technique and free surface
implementation based on the ‘sticky water’ approach, which became widespread two
decades later.

1985–1986: First 3D spherical mantle convection models (Baumgardner, 1985; Machetel
et al., 1986).

The first 3D models were spherical and not Cartesian as one would expect. Also, for some
reason, the first paper appeared in the Journal of Statistical Physics, which is not really a
geophysical journal …

1988: First 3D Cartesian mantle convection models (Cserepes et al., 1988; Houseman, 1988).

Since the 1980s, numerical geodynamic modelling has been developing very rapidly in
terms of both the number of applications and the numerical techniques explored. In the last
decade, several textbooks on numerical geodynamic modelling have been published
(Gerya, 2010a; Ismail-Zadeh and Tackley, 2010; Simpson, 2017; Morra, 2018), which
make it more accessible for geoscientists and help in teaching it to students. At present,
geodynamic modelling stands as one of the most dynamic, cross-disciplinary and advanced
fields of modern Earth sciences.

Few words about programming, visualization and debugging

In the frame of this book MATLAB is used for the exercises and for visualization. This is a
good language of choice for people starting with modelling as it allows both easy comput-
ing and visualization. C and FORTRAN are often used for advanced studies that involve
usage of supercomputers and computer clusters. In these studies, visualization is mostly
done as a post-processing step that allows independent use of specialized visualization
packages. In our short course, we are more interested in seeing results instantaneously,
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during computations. In addition, MATLAB greatly simplifies the solving of systems of
linear equations, which is the core of numerical modelling. Another convenient program-
ming language with growing popularity in geodynamics is PYTHON (Morra, 2018).

In this course, we will consider many example programs, since learning to write
programs (and not just using them) is an essential part of numerical geodynamic modelling.
There are ten important programming rules (which I call Bug Rules), which you may want
to follow when writing your own programs.

Bug Rule 1: Think before programming! Think carefully about the algorithm of your
new code and the most efficient way of making modifications to your old code – you
will then develop the program faster and more efficiently and will not need too much
code re-thinking and re-writing.

Bug Rule 2: Comment!Making comments in the code is essential to enable the code to
be used, debugged and modified correctly. The ratio between comment lines and
program lines in a good numerical code is larger then 1:1. Do not be lazy, explain
every program line – this will save you a lot of time afterwards!

Bug Rule 3: Programming makes bugs! We always introduce bugs (i.e. programming
errors) while writing a code. We typically introduce at least one bug when we modify
one single line and we have to test the modified code until we find the bug!

Bug Rule 4: Programming means debugging! Be prepared that only 1% of the time
will be spent on programming and 99% of your time will be spent on debugging.

Bug Rule 5: Nice looking codes are often more difficult to debug! Do not try to write
nice looking codes; try to write codes that are easy to debug! Use the most simple and
explicit code logic and structure. Be very pragmatic; do not make changes to
previously debugged code sections unless absolutely necessary. Go for important
code changes only; do not ‘fight’ for better looking code structure or minor improve-
ments of computational efficiency.

Bug Rule 6: Bugs that are the most difficult to find are trivial ones! There are three
types of most common bugs:

• errors in index (90% of your bugs!), e.g. y = x(i,j) + z(12) instead of y = x(j,i) − z(2);
• errors in sign, e.g. y = x + z instead of y = x − z or y = 1e − 19 instead of y = 1e + 19;
• errors in order of magnitude, e.g. y = 0.0831 instead of y = 0.00831.

Do not be surprised that finding these ‘trivial’ bugs will sometimes be very difficult
(we simply tend to overlook them) and will take a lot of time – this is normal.

Bug Rule 7: If you see something strange – there is a bug!Be suspicious, do not ignore
even small strange things and discrepancies that you see when computing with your
code – in 100% of cases you will find that a bug is the cause. Never try to convince
yourself (although this is what we typically tend to do) that a single last digit
discrepancy in results with the previous version of the code is due to computer
accuracy – it is due to either old or new bugs!

Programming, visualization and debugging 9
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BugRule 8:A single bug can ruin a 10 000-line code!We should really be motivated to
carefully debug and test codes. Do not think that one single small error in the code can
be ignored – it will spoil the results of months of calculations.

Bug Rule 9: Awrong model looks beautiful and realistic! Often erroneous models do
not look bad or strange and some of them are really beautiful. Therefore, be prepared
that of the numerical modelling results you like, some are actually wrong …

Bug Rule 10: Creating a good, correct and nicely working code is possible! This is
what should motivate us to follow the nine previous rules!

Many years of correcting students’ codes made me convinced that there is only one
robust (although not really elegant and efficient) way of finding bugs in a code: write
two independent versions (i.e., without copy-pasting) of the same code (preferably by
two different people) and compare computational results for well controlled conditions.
If the results are different – there is at least one bug in at least one of the two codes.
Then, try to copy-paste routines from one code version to the other until the results
become identical. This helps to find routines that produce different results and to clarify
reasons (bugs) for the discrepancy. Experience shows that it is very unlikely that two
independent code versions will have identical bugs (even if both are written by the same
person). Adding more code versions (and people) to the ‘pool’ will further help
debugging.

Units

In this book, the metre-kilogram-second (MKS) system is used in all basic equations as a
standard, with only occasional specified deviations toward other conventional units widely
used in geosciences (kbar, °C etc.).

How to use this book

Once again, this is a textbook, which is primarily aimed at people inexperienced with
numerical methods. Therefore, it is organized in a way that, according to my personal
learning and teaching experience, provides the easiest path for learning the basics of
continuum mechanics and numerical geodynamic modelling. Follow it from one chapter
to the next and do all the exercises. Do all the programming by yourself and study code
examples ONLY when you are stuck or unsure what to do (all MATLAB codes quoted in
the text are provided with this book, see the Appendix). The complexity of the program-
ming exercises gradually increases from one chapter to the next, introducingmore andmore
complex aspects of continuum mechanics and numerical modelling. Just trust this way and
don’t give up!

10 Introduction

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316534243.001
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 18 Aug 2019 at 08:57:41, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316534243.001
https://www.cambridge.org/core


Programming exercises

Exercise Introduction.1.
Open MATLAB and use it for the first time. Study the following (use MATLAB Help to
read about various functions and operations).

(a) Defining variables, vectors and matrices.
(b) Using mathematical functions (+, -, *, .*, /, ./, ^, .^, exp, log, log10, etc.).
(c) Opening/closing text files and loading/writing data from/to them (fopen, fclose, fscanf,

fprintf).
(d) Plotting of data in 2D and 3D (figure, plot, pcolor, surf, xlabel, ylabel, shading, light,

lighting, axis, colorbar).
(e) Programming loops (for, while, end) and conditions (if, else, end, switch, case, &&, ||,

==, ~=, >, <, >=, <= etc.).

Exercise Introduction.2.
Write your first MATLAB code for visualizing the sin and cos functions in 2D (plot, pcolor,
contour) and 3D (surf, light, lighting). An example is in Visualisation_is_important.m.

Programming exercises 11
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1

The continuity equation

Theory: Definition of a geological medium as a continuum. Field variables
used for the representation of a continuum. Methods for definition of the field
variables. Eulerian and Lagrangian points of view. Continuity equation in
Eulerian and Lagrangian forms and their derivations. Advective transport
term. Continuity equation for an incompressible fluid.
Exercises: Computing the divergence of a velocity field in 2D.

1.1 Continuum – what is it?

What we should understand from the very beginning is that geodynamics considers major
rock units, such as the Earth’s crust and mantle, as continuous geological media. Continuity
of any medium implies that, on a macroscopic scale, the material under consideration does
not contain mass-free voids or gaps (there can indeed be pores or cavities but they are also
filled with some continuous substances). Different physical properties of a continuum may
vary at every geometrical point and we thus need a continuous description. In continuum
mechanics, the physical properties of a continuum (field properties) are described by field
variables such as pressure, temperature, density, velocity etc. There are three major types of
field variables:

scalars (e.g., pressure, temperature, density),
vectors (e.g., velocity, mass flux, heat flux),
tensors (e.g. stress, strain, strain rate).

Field variables can be represented in a fully continuous manner (analytical expressions,
Fig. 1.1a) or in a discrete-continuous way (by arrays of values which characterize selected
nodal geometrical points, Fig. 1.1b–d). In the latter case, various linear and non-linear
interpolation rules are used to calculate values of field variables between the nodal points.
Continuity also implies that displacements of different portions of the medium are not

fully independent. These displacements must proceed without creating macroscopic voids
and gaps: if some rocks are displaced from a certain area (for example due to tectonic
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extrusion), other rocks must come into this area and substitute the displaced fragment
(Fig. 1.2). In a way, this type of continuous behaviour is very similar to that of water or,
generally, any fluid which can be described with fluid mechanics (e.g. Landau and Lifshitz,
1987; Kundu, and Cohen, 2002). Since on long time scales rocks behave like slowly

Fig. 1.1. Continuous (a) and discrete-continuous (b)–(d) representations of a field variable as
a function of coordinates. Note that in the case of the discrete-continuous representation with linear
interpolation between nodal points, the representation accuracy notably increases with increasing
number of nodal points (compare a with b, c and d).

Fig. 1.2. Example of the deformation of a continuous medium (white dots) due to the buoyant rise of
a rigid block (black dots): (a) initial stage, (b) final stage with the corresponding velocity field
indicated by arrows. Note that no voids are formed where the block was initially located (dashed
contour). Individual black and white dots in (a) and (b) correspond to different Lagrangian points
displaced by the flow. Diagrams are computed numerically with the code developed by Gerya and
Yuen (2003a), and an animation is shown in the file Continuity.ppt associated with this chapter.
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creeping fluids, geodynamic processes in the Earth’s mantle, as for example mantle con-
vection, are often referred to as processes of geophysical fluid dynamics.

1.2 Continuity equation

Our qualitative, intuitive understanding of continuity can, indeed, be transformed into
a quantitative mathematical formalism. This formalism is widely used in numerical geo-
dynamic modelling in the form of a continuity equation, which describes the conservation
of mass during the displacement of a continuous medium. Let us write this equation and try
to understand its structure in detail.
The first thing that we have to learn is that the form of the mass conservation equation

(and many other time-dependent conservation equations) can be either Eulerian or
Lagrangian depending on the nature of the geometrical point for which this equation is
written.
The Eulerian continuity equation is written for an immobile or fixed point in space; it has

the form

∂ρ
∂t

þ divðρ~vÞ ¼ 0: ð1:1aÞ

Or, in a slightly different symbolic notation often used in continuum mechanics,

∂ρ
∂t

þ∇ • ðρ~vÞ ¼ 0; ð1:1bÞ

where ∂=∂t is the Eulerian time derivative; ρ is the local density, which characterizes the
amount of mass per unit volume (kg/m3);~v is local velocity (m/s) and div() or∇ • denotes
the divergence operator. The divergence is a scalar function of a vector field, and is defined
as follows:

in one dimension 1Dð Þ divð~v Þ ¼ ∂vx
∂x

; ð1:2aÞ

in two dimensions 2Dð Þ divð~v Þ ¼ ∂vx
∂x

þ ∂vy
∂y

; ð1:2bÞ

in three dimensions 3Dð Þ divð~v Þ ¼ ∂vx
∂x

þ ∂vy
∂y

þ ∂vz
∂z

; ð1:2cÞ

where x, y, and z are Cartesian coordinates and vx, vy and vz are components parallel to the
respective coordinate axes of the velocity vector ~v (Fig. 1.3). In simple words, the
divergence of a vector in a given point is positive when the surrounding vector field is
directed predominantly outward of the point (divergent flow, Fig. 1.4a) and is negative
when this field is directed predominantly toward the point (convergent flow, Fig. 1.4b).
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The Lagrangian continuity equation is written for a moving point of reference; it has the
form

Dρ
Dt

þ ρdivð~vÞ ¼ 0; ð1:3aÞ

or
Dρ
Dt

þ ρ∇ •~v ¼ 0; ð1:3bÞ

where D=Dt is the Lagrangian time derivative and the other parameters were explained
before (see Eq. 1.1).

1.3 Eulerian and Lagrangian points – what is the difference?

Understanding the difference between Eulerian and Lagrangian points is fundamental for
continuum mechanics. A Lagrangian point is strictly connected to a single material point
and is moving with this point. Therefore, the same material point is always found in a given
Lagrangian point independent of the moment of time. For this reason, the Lagrangian time

Fig. 1.3. Components of a local velocity vector ~v (grey arrow) in one (a), two (b), and three (c)
dimensions.

Fig. 1.4. Examples of divergent (a), convergent (b) and neutral (c) 2D velocity fields around
a point.
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derivative of density Dρ=Dt (i.e., changes in density with time in the Lagrangian point) is
also called the substantive or objective time derivative. On the other hand, an Eulerian point
is an immobile observation point, not related to any specific material point. Therefore, at
different moments of time, different Lagrangian material points can be found at the same
Eulerian point. In other words, different Lagrangian material points are passing through the
same Eulerian observation point with time. Good analogies for an Eulerian and
a Lagrangian point are respectively a fixed window and a person walking past in front of
it. Many equations of continuum mechanics containing time derivatives can be written in
both Eulerian and Lagrangian forms which differ from each other (e.g. Eqs. 1.1 and 1.3).
Choosing either the Eulerian or Lagrangian form of an equation notably affects the method
of representing advective transport processes (i.e. the movement of material with the flow)
which will be discussed in detail in Chapter 8, together with the advantages and disadvan-
tages of the two approaches.

1.4 Derivation of the Eulerian continuity equation

Let us now analyse the Eulerian continuity equation (Eq. 1.1), which contains both vector
(velocity) and scalar (density) variables. This equation establishes the balance of mass in
a small fixed observation volume. It implies, in particular, that if mass is leaving (fluxing
out of) the volume (i.e., div(ρ~v) > 0), the local density (i.e., the amount of mass per unit
volume) decreases with time (i.e., ∂ρ=∂t < 0).
First we need to understand that ρ~v is the local mass flux vector

ρ~v ¼ ρvx; ρvy; ρvz
� �

; ð1:4Þ

which has the dimension of unit mass, fluxing through a unit surface, per unit time
(kg= m2s

� �
). This definition follows from the fact that the velocity in a continuous medium

can be considered asmaterial volume flux (Fig. 1.5), i.e., unit volume fluxing through a unit
surface per unit time (m=s ¼ m3= m2s

� �
). Therefore, velocity (i.e. volume flux) multiplied

by the density (i.e. mass per unit volume) gives the mass flux.
We can derive the Eulerian continuity equation by analysing material fluxes through

a small, immobile, rectangular Eulerian (observation) volume of constant dimensions Δx,
Δy and Δz (Fig. 1.6a). Let us assume that the initial mass of fluid in this volume ism0. Then,
the initial average fluid density (ρ0) within this volume is

ρ0 ¼
m0

Δx Δy Δz
: ð1:5Þ

Mass enters the volume through the boundaries A, C and E and leaves it through the
opposite boundaries B, D and F. Material fluxes affect the mass of fluid in the observation
volume and after a small period of time Δt (time increment), this mass becomes m1 and the
average fluid density changes to the new value (ρ1)
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ρ1 ¼
m1

Δx Δy Δz
: ð1:6Þ

The balance between the old (m0) and new (m1) masses results in the following relations:

Fig. 1.5. Relationship between the flow velocity v and material volume V, passing through the
element S of the immobile Eulerian surface (grey) during the time t. The relations V = S L and L =
v t allow one to formulate velocity as the material volume flux v ¼ V= Stð Þ.

Fig. 1.6. Eulerian (a) and Lagrangian (b) elementary volumes considered for the derivation of the
continuity equation. Arrows in (a) show the velocity components which are responsible for material
fluxes through the respective boundaries (A, B, C, D, E and F). Arrows in (b) show the velocity
components responsible for moving the respective boundaries.
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m1 ¼ m0 þ min � mout;

min ¼ mA þ mC þ mE;

mout ¼ mB þ mD þ mF;

mA ¼ ρAvxAΔyΔzΔt;

mB ¼ ρBvxBΔyΔzΔt;

mC ¼ ρCvyCΔxΔzΔt;

mD ¼ ρDvyDΔxΔzΔt;

mE ¼ ρEvzEΔxΔyΔt;

mF ¼ ρFvzFΔxΔyΔt;

ð1:7Þ

where min and mout are the incoming and outgoing masses, respectively; mA to mF are
masses that passed through the respective boundaries during the time Δt; ρA to ρF are the
densities at the respective boundaries; vxA to vzF are the velocity components responsible for
material fluxes through the boundaries (Fig. 1.6a). If Δt is small, we can now write an
approximate expression for the Eulerian time derivative of the average density in the
volume as:

∂ρ
∂t

≈
Δρ
Δt

¼ ρ1 � ρ0
Δt

¼ m1 � m0

Δx Δy Δz Δt
: ð1:8aÞ

By using Eq. (1.7) the following expression can be obtained (verify as an exercise)

Δρ
Δt

¼ � ρBvxB � ρAvxA
Δx

� ρDvyD � ρCvyC
Δy

� ρFvzF � ρEvzE
Δz

; ð1:8bÞ

or

Δρ
Δt

¼ �ΔðρvxÞ
Δx

� ΔðρvyÞ
Δy

� ΔðρvzÞ
Δz

; ð1:8cÞ

or

Δρ
Δt

þ ΔðρvxÞ
Δx

þ ΔðρvyÞ
Δy

þ ΔðρvzÞ
Δz

¼ 0;

ΔðρvxÞ ¼ ρBvxB � ρAvxA;
ΔðρvyÞ ¼ ρDvyD � ρCvyC;
ΔðρvzÞ ¼ ρFvzF � ρEvzE;

ð1:8dÞ

where ΔðρvxÞ, ΔðρvyÞ and ΔðρvzÞ are differences in the mass fluxes in the x, y and
z directions respectively (i.e. through the respective pairs of boundaries, Fig. 1.6a).
Obviously, in such cases when Δt, Δx, Δy and Δz all tend to zero, the differences can be
replaced by derivatives and we obtain the Eulerian continuity equation:
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∂ρ
∂t

þ ∂ðρvxÞ
∂x

þ ∂ðρvyÞ
∂y

þ ∂ðρvzÞ
∂z

¼ 0; ð1:9aÞ

or
∂ρ
∂t

þ divðρ~vÞ ¼ 0: ð1:9bÞ

1.5 Derivation of the Lagrangian continuity equation

Similarly, we can derive the Lagrangian continuity equation by analysing the motion of
a small, mobile, rectangular Lagrangian (material) volume of initial dimensions Δx0, Δy0
and Δz0 (Fig. 1.6b). In contrast to the fixed Eulerian volume, the amount of mass m in the
moving Lagrangian volume remains constant (since this volume always contains the same
material points), but the dimensions of the volume may change due to internal expansion/
contraction processes. The initial average fluid density (ρ0), within the volume is given by

ρ0 ¼
m

Δx0 Δy0 Δz0
: ð1:10Þ

Internal expansion or contraction affects the dimensions of the Lagrangian volume, and
after a small period of time Δt, these dimensions become Δx1, Δy1 and Δz1 and the average
fluid density (ρ1) changes to

ρ1 ¼
m

Δx1 Δy1 Δz1
: ð1:11Þ

We can establish the relationship between the old (Δx0, Δy0, Δz0) and the new (Δx1, Δy1,
Δz1) dimensions of the Lagrangian volume on the basis of the relative movements of the
boundaries of the volume (A, B, C, D, E, F, Fig. 1.6b), which leads to the following
relations:

Δx1 ¼ Δx0 þ Δt Δvx;
Δvx ¼ vxB � vxA;

ð1:12Þ

Δy1 ¼ Δy0 þ Δt Δvy;
Δvy ¼ vyD � vyC;

ð1:13Þ

Δz1 ¼ Δz0 þ Δt Δvz;
Δvz ¼ vzF � vzE;

ð1:14Þ

whereΔvx,Δvy andΔvz are the differences in the velocity components that correspond to the
relative movements of respective pairs of boundaries (Fig. 1.6b). Taking Δt to be small, we
can now write an approximate expression for the Lagrangian time derivative of the average
density in the volume as
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Dρ
Dt

≈
Δρ
Δt

¼ ρ1 � ρ0
Δt

¼ m
Δx1 Δy1 Δz1 Δt

� m
Δx0 Δy0 Δz0 Δt

: ð1:15Þ

By using the equations derived for Δx1, Δy1 and Δz1 (Eqs. 1.12–1.14) the following
expression can be obtained (verify as an exercise):

Δρ
Δt

¼ ρ0
1� 1þ Δt ΔvxΔx0

� �
1þ Δt ΔvyΔy0

� �
1þ Δt ΔvzΔz0

� �
Δt 1þ Δt ΔvxΔx0

� �
1þ Δt ΔvyΔy0

� �
1þ Δt ΔvzΔz0

� � ; ð1:16aÞ

or

Δρ
Δt

¼ ρ0
� Δvx

Δx0
� Δvy

Δy0
� Δvz

Δz0
� Δt Δvx

Δx0
Δvy
Δy0

þ Δvx
Δx0

Δvz
Δz0

þ Δvy
Δy0

Δvz
Δz0

þ Δt ΔvxΔx0
Δvy
Δy0

Δvz
Δz0

� �
1þ Δt ΔvxΔx0

� �
1þ Δt ΔvyΔy0

� �
1þ Δt ΔvzΔz0

� � ; ð1:16bÞ

or

Δρ
Δt

þ ρ0

Δvx
Δx0

þ Δvy
Δy0

þ Δvz
Δz0

þ K1

K2
¼ 0; ð1:16cÞ

where

K1 ¼ Δt
Δvx
Δx0

Δvy
Δy0

þ Δvx
Δx0

Δvz
Δz0

þ Δvy
Δy0

Δvz
Δz0

þ Δt
Δvx
Δx0

Δvy
Δy0

Δvz
Δz0

� �

K2 ¼ 1þ Δt
Δvx
Δx0

� �
1þ Δt

Δvy
Δy0

� �
1þ Δt

Δvz
Δz0

� �
:

K1 and K2 are coefficients which respectively tend to zero and unity when Δt tends to zero.
Obviously, in the case when Δt, Δx0, Δy0 and Δz0 all tend towards zero, the differences in
Eq. (1.16c) can be replaced by derivatives and taking K1 = 0 and K2 = 1 we obtain the
Lagrangian continuity equation

Dρ
Dt

þ ρ
∂vx
∂x

þ ρ
∂vy
∂y

þ ρ
∂vz
∂z

¼ 0; ð1:17aÞ

or

Dρ
Dt

þ ρ divð~vÞ ¼ 0: ð1:17bÞ
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1.6 Comparing Eulerian and Lagrangian continuity equations:
advective transport term

Let us now perform transformations of the Eulerian continuity equation (Eq. 1.1) in order to
decipher its structure and to establish a relationship with the Lagrangian continuity equation
(Eq. 1.3). It is convenient to decompose div(ρ~v) using the standard product rule (also called
Leibniz’s law) u � vð Þ0 ¼ u

0 � vþ v
0 � u, or ∂ uvð Þ=∂x ¼ ∂u=∂xð Þvþ ∂v=∂xð Þu

divðρ~vÞ ¼ ρdivð~vÞ þ~v gradðρÞ; ð1:18aÞ

or in a different symbolic notation

∇•ðρ~vÞ ¼ ρ∇•~v þ~v•∇ρ; ð1:18bÞ

or ‘deciphering’ what we actually are doing in three dimensions

∂
∂x

ρvxð Þ þ ∂
∂y

ρvy
� �þ ∂

∂z
ρvzð Þ ¼ ρ

∂vx
∂x

þ ρ
∂vy
∂y

þ ρ
∂vz
∂z

� �
þ vx

∂ρ
∂x

þ vy
∂ρ
∂y

þ vz
∂ρ
∂z

� �
;

ð1:18cÞ

where grad(ρ) or ∇ρ is the gradient of the density ρ. The gradient is a vector function of
a scalar field defined as follows:

in one dimension 1Dð Þ gradðρÞ ¼ ∂ρ
∂x

� �
; ð1:19aÞ

in two dimensions 2Dð Þ gradðρÞ ¼ ∂ρ
∂x

;
∂ρ
∂y

� �
; ð1:19bÞ

in three dimensions 3Dð Þ gradðρÞ ¼ ∂ρ
∂x

;
∂ρ
∂y

;
∂ρ
∂z

� �
: ð1:19cÞ

Therefore, both∇ρ and~v in Eq. (1.18) are vectors and the scalar product (or dot product)
of these two vectors (1.18c) gives the following result:

in one dimension 1Dð Þ ~v gradðρÞ ¼ vx
∂ρ
∂x

; ð1:20aÞ

in two dimensions 2Dð Þ ~v gradðρÞ ¼ vx
∂ρ
∂x

þ vy
∂ρ
∂y

; ð1:20bÞ

in three dimensions 3Dð Þ ~v gradðρÞ ¼ vx
∂ρ
∂x

þ vy
∂ρ
∂y

þ vz
∂ρ
∂z

: ð1:20cÞ

Now by comparing Eqs. (1.1), (1.3) and (1.18) we can establish the relationship between
the Eulerian (∂ρ=∂t) and Lagrangian (Dρ=Dt) time derivatives of density as
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